Scénario TERP TRANSITION ENERGETIQUE en REGION PACA

La région PACA n'est pas la France le scénario TERP diffère du scénario négaWatt®

Ce scénario TERP a été réalisé en 2011-2012 par un groupe d'ingénieurs, militants et coopérateurs, d'EELV-PACA coordonné par Michel PIERRE (83)

avec

Pierre Custaud (83), Adrien Gandolfo (84), Jean-Paul KLEIN (83), Guillaume Poincheval (04) et Serge Vayssettes (84)

NON AUX ENEGIES FOSSILES & FISSILES OUI A LA TRANSITION ENERGETIQUE

NON! ni dans le Var, ni ailleurs oui à la transition énergétique!

http://www.docgazdeschiste83.org/

Rassemblement de Lezan:

NON au gaz de schiste et de houille en Provence! **OUI** au « Pacte Énergétique Citoyen »!

Le scénario TERP en PACA diffère de négaWatt® pour la France

Consommations d'énergie en 2009 (%)

	France	PACA
Habitat -tertiaire	45	33
Transports	32	32
Industrie	21	35

Le secteur habitat-tertiaire bénéficie d'un climat favorable : 33 % < 45 % Le secteur industriel : énergivore autour de l'étang de Berre 35 % > 21%

La région PACA est atypique en France

☑ Réduire les consommations d'énergie de moitié dans l'habitat-tertiaire

Dans l'habitat, en 30 ans isolation des 2 millions de logements en PACA

Consommation réduite de 70 kWh/m²/an

Gain: 70 kWh/m²/an * 83 m² (moyenne) * 2 Mlogt = 11600 Millions kWh = 11600 GWh ou

1000 kTep

soit à 1000 € la tonne : 1 milliard d'euros / an

à comparer à 1 milliard d'euros pendant 20 ans pour la LGV-PACA

pour un gain de quelques dizaines de minutes

avec création de milliers d'emplois locaux :

pour les diagnostiques énergétiques, pour la fabrication d'isolants :

2 Mlogements* 3 T d'isolant /30 ans = 100.000 tonnes d'isolants par an pour la pose des isolants

pour la réhabilitation : autres modes de chauffage, rénovation (peinture ..)

Réduction des consommations électriques : ~1100kTep # 2 réacteurs nucléaires

Appareil ménagers, veilles ..

Après isolation, suppression des climatisations et de la majorité des chauffages électriques

☑ Réduire les consommations d'énergie dans les transports et l'industrie

Dans les transports

TERP prévoit une réduction de - 47 % seulement comparé à -61% du scénario négaWatt® car la région dépend d'approvisionnements extérieurs

Dans l'industrie

L'industrie en Bouches-du-Rhône privée d'importations de pétrole sera reconvertie :

- Vers la production et le raffinage de « biopétrole »
- Vers la production et le stockage d'hydrogène par électrolyse
- Vers l'exploitation de la géothermie profonde

La géothermie profonde, une alternative au nucléaire et au gaz de schiste

LEMONDE.FR | 27.06.11 | 09h10 • Mis à jour le 27.06.11 | 09h22

- Vers la pyrolyse de biomasse sèche et la production de carburants verts : biogaz ..

Ainsi la demande d'énergie du secteur pourrait être diminuée de 54 % (négaWatt : 48 %)

□ Réduire les consommations d'énergie en PACA

Besoins d'énergies en PACA à l'horizon 2050

PACA	2010		2050	
kTep				
Chaleur	10	0%	875	14%
Combustibles	8900	72 %	3597	59%
Electricité	3430	28%	1578	26%
	12340		6050	-51%

- 53 % selon négaWatt pour la France

An 2050, sans pétrole ni nucléaire, comment y parvenir avec les énergies renouvelables ?

La région PACA produit déjà 1341 kTep d'EnR (en 2009 selon ORE 2010) :

- + 861 kTep d'électricité hydraulique
- + 440 kTep de bois
- + 26 kTep à partir des déchets
- + 9,5 kTep d'électricité éolienne
- + 4 kTep de solaire

Selon négaWatt®
au prorata du nombre d'habitants
en 2050 la production d'EnR
devrait être au total de 7442 kTep
dont une majorité (53%) issue de la biomasse

Production EnR	PACA			
2050	"négaWatt"			
Mhabitants	5,61			
	kTep			négaWatt
Solaire thermique	302	4,1%		
Géothermie	388	5,2%	9%	Chaleur
Hydraulique	597	8,0%		
Photovoltaïque	698	9,4%		
Eolien	1504	20,2%	38%	Electricité
Biomasse solide	2124	28,5%		
Biogaz	1388	18,6%		
Biomasse liquide	341	4,6%		
Energies marines	54	0,7%		
Déchets	47	0,6%	53%	Combustibles
Total EnR	7442	100%		

Aujourd'hui la chaleur est obtenue par

- Combustion de bois : 440 kTep
- Combustion de produits pétroliers
- Electricité : un tiers des besoins thermiques en PACA # 1300 kTep

Demain en PACA, le solaire thermique et la géothermie

peuvent globalement fournir les besoins de chaleur de 900 kTep à condition de la stocker du jour pour la nuit ou pour quelques jours :

- Solaire thermique avec réserve d'eau chaude : 575 kTep
- Solaire thermodynamique et géothermie : 300 kTep
- Appoints encore nécessaires pour les pointes hivernales de 310 kTep Bois 140 kTep, pompe à chaleur 20 kTep, électricité 150 kTep

CONCLUSIONS POUR L'AVENIR

- 1- Isoler d'abord
- 2- **Chauffage solaire**: eau chaude sanitaire, ventilation double flux...
- 3- Limiter les appoints d'énergie :

en combustibles (bois, biogaz ...) et électricité (utilisable autrement)

TERP (kTep)		
Hydraulique 1123		
Photovoltaïque	1140	
Eolien	1600	
Electricité	3863	

négaWatt PACA (kTep)		
Hydraulique	597	
Photovoltaïque	698	
Eolien	1504	
Electricité	2798	

Ne pas confondre énergie et puissance Energie (MWh) = Puissance (MW) x Heures (h) maximum = 8760 h/an

	Puissance MW	Heures (*) h	Energie MWh	Energie Tep
Nucléaire	1	6500	6500	560
Hydraulique	1	3500	3500	300
Eolien	1	2000	2200	172
Photovoltaïque	1	1200	1200	103

(*) Temps équivalent = Energie annuelle / Puissance installée

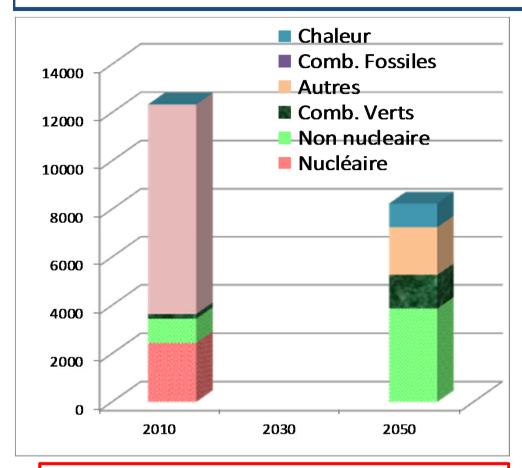
∠ EnR Energies Renouvelables Combustibles en déficit en PACA

La région PACA n'est pas auto-suffisante pour son alimentation :

Alimentation en milliards de kcal				
Consommation Production				
animale	végétale	animale végétale		
918	1645	391 662		
Autosuffisance %		43%	40%	

en conséquence elle manque de déchets agricoles pour leur valorisation énergétique

Les besoins en combustibles de 4000 kTep ne seront assurés que par


- la transformation de 1000 kTep en 500 kTep de combustibles supplémentaires (hydrogène)
- le développement d'une filière de biomasse marine de 2000 kTep avec les micro-algues

TERP (kTep)		
Biomasse solide	1114	
Biogaz	130	
Biomasse liquide	0	
Biomasse marine	2000	
Déchets	280	
Total 3524		

négaWatt PACA (kTep)		
Biomasse solide	2124	
Biogaz	1388	
Biomasse liquide	341	
Energies marines	54	
Déchets	47	
Total EnR	3953	

tandis que selon des projections négaWatt, la biomasse répondait aux besoins ...

2010 : Le nucléaire ne représente que 62 % de l'électricité consommée en PACA (80% en France)

2034 : Fin du nucléaire

Production EnR	PACA			
2050	TERP			
Mhabitants	5,61			
	kTep			TERP
Solaire thermique	270	3%		
Géothermie	515	6%	10%	Chaleur
Hydraulique	1123	14%		
Photovoltaïque	1140	14%		
Eolien	1600	20%	47%	Electricité
Biomasse solide	1114	14%		
Biogaz	130	2%		
Biomasse liquide	0	0%		
Bomasse marine	2000	24%		
Déchets	280	3%	43%	Combustibles
Total EnR	8172	100%		

7442 kTep selon négaWatt

TERP Transition Energétique en Région PACA

ALERTE VERTE : manque de combustibles

CHALEUR

BESOINS COUVERTS
ENERGIES D'APPOINT A MINIMISER

ELECTRICITE EXCEDENTAIRE

A STOCKER
ou A ECHANGER CONTRE DES CARBURANTS

COMBUSTIBLES

BIOMASSE DEFICITAIRE (40 % de la moyenne nationale)

STOCKAGE ET « INTERNET DES ENERGIES »

STOCKER LES ENERGIES INTERMITTENRES INTERCONNECTER ET GERER LES PRODUCTIONS

Scénario TERP TRANSITION ENERGETIQUE en REGION PACA

La région PACA n'est pas la France le scénario TERP diffère du scénario négaWatt®

La région PACA manque de biomasse terrestre mais peut développer la biomasse marine ou échanger de l'électricité

TERP Transition Energétique en Région PACA ALERTE VERTE : manque de combustibles

Chaleur

Les besoins en chaleur peuvent être couverts par le solaire et la géothermie. Les énergies d'appoint et de pointes devront être minimisés par le stockage de chaleur ou de

Electricité excédentaire à stocker

Les besoins en électricité sont couverts par une production très excédentaire : photovoltaïque, éoliennes terrestre et offshore, cogénération géothermique ou solaire thermodynamique.

Combustibles

La biomasse terrestre régionale est réduite de moitié par rapport à la moyenne nationale en raison du manque de surfaces agricoles, du relief et d'une faible pluviométrie

Le manque de ressources combustibles, particulièrement nécessaire pour les transports, fera appel aux

> ressources excédentaires d'électricité

pour les voitures, trains, tramways ou la production d'hydrogène à partir de l'électrolyse de l'eau > ressources nouvelles encore hypothétiques de la biomasse marine : micro-algues

Stockage et « internet des énergies »

Les ressources de chaleur solaire et d'électricité sont délocalisées et intermittentes.

Sont à développer leurs stockages ou leurs transformations en combustibles :

stockage des pointes de production
mise en place de réseaux intelligents pour favoriser la consommation aux heures creuses

combustibles verts

TERP Transition Energétique en Région PACA ALERTE AUX POLITIQUES

« Gouverner c'est prévoir »

La fin des énergies faciles, fossiles et fissiles, énergies polluantes (effet de serre, déchets radioactifs) et dangereuses (Fukushima) conduit

soit à persévérer un peu plus longtemps avec les gaz de schiste, les forages en mer soit à renoncer progressivement à cette addiction en optant pour une transition énergétique vers les énergies renouvelables

« Gouverner c'est prévoir »

Nos voisins européens comme l'Allemagne, le Danemark .. ont déjà opté pour une transition énergétique, encouragés par l'Europe et l'ONU, avec des tarifs de l'électricité double d'EDF Pour une « taxe énergie propre » avec un accompagnement de la précarité énergétique

En PACA

implantons le solaire thermique (voir Espagne, Turquie ..), le photovoltaïque, la géothermie, la biomasse terrestre en privilégiant les terres agricoles ou sylvicoles et développons la biomasse marine (combustibles liquides) ou échangeons de l'électricité contre des carburants

